An Unmanned Spacecraft Subsystem Cost Model for Advanced Mission Planning
G. Madrid, Jet Propulsion Laboratory, March 23, 1998

. Introduction

As a NASA center, the Jet Propulsion' Laboratory (JPL) is committed to the
concept of developing and launching a continuously improving series of
smaller robotic space exploration missions in shorter intervals of time (faster,
better, cheaper). In order to plan and budget these advanced missions, JPL has
begun an institutional initiative labeled “Develop New Products”- (DNP). This
institutional initiative involves an across the board paradigm shift in the process
with which new projects are planned, designed, and implemented in an
accelerated implementation cycle. A key factor in the planning of these missions
is an accurate estimation of their cost so that an adequate, yet efficient, budget
may be proposed that will not only be acceptable to NASA but will ensure a
realistic implementation of a specific project within a predetermined project
implementation schedule and risk envelope.

The project planning process has also been accelerated so that cost estimates may
be produced within a one to two week cycle. This permits a second or third cost
estimate to be produced that takes into account technology-cost trades vs. science
objectives derived from the advanced planning deliberations in which the cost
estimators play a key role. Once converged, this process leads to a budget estimate
that has achieved a certain degree of consensus within the JPL community and its
industrial partners prior to entering the proposal stage. Because of this, the
probability of approval of the proposal is greatly increased.

The main instrument for carrying out this advanced planning process is a team
of spacecraft and ground system engineering experts termed “Team X” at JPL.

The team members are key technical staff selected by the JPL technical divisions
as having the expertise required to design and cost the subsystem to which they
. have been assigned. This team conducts its deliberations around a distributed
workstation facility that interacts through a network in conjunction with a
central data basé and a documentarian. This arrangement perniits the study
leader and team members to interact in “real time” to develop a preliminary
design and cost estimate within a week. Such a process would normally have
taken from Lh[eeg four months under the previous paradigm. A large pftion of

w/ —the proposals revieed by Team X are of the DNP type. In order for a new project

to be termed “DNP”, the proposal must establish that the implementation (from
concept to launch) can be accomplished within 33 months and the final cost
estimate must fall into a cost range between $120M and $500M, not including the
launch vehicle. Projects falling outside this range are processed using other more
pertinent models.
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are examined by the Study Lead and the Team X system engineer and may be
overridden by them.

The cost estimation process uses differing approaches to predicting cost based on
the portion of the work breakdown structure (WBS) being estimated. The basic
methods used for estimating the cost of the distinct portions of the total project
cost are:

1. Statistically-based algorithms from the previous Deep Space Cost Model
that have been adjusted to conform to the DNP paradigm. This type of
algorithm are termed historically-based algorithms (Hist. Based Algo.)

2. A non-statistical algorithm based on a quasi-grass-roots-based estimate and

expert opinion formulated in consultation with technical specialists in the

area of the project component being assessed. The algorithm is based on an
evaluation of actual data and the design of the function being performed
but which does not have sufficient structure to formulate a model at this
time.

The current Instrument Cost Model developed by Keith Warfield

The current Subsystem Cost Model developed by Leigh Rosenberg

The actual price of the item being assessed, as in the case for launch

vehicles, where the cost to the government is either predetermined by

agreement with the vendors or’is the listed price for the service.

e W

The following lists the components of the advanced project cost estimation
process and the method used:

A

Project Cost Component Cost Est. Method
Project Management and Administration Hist.-Based Algo.
Science and Science Team Activities Quasi-GR-Based Algo.
Project and Mission Engineering Hist.-Based Algo.
Payload (Instruments) Instr. Cost Model
Spacecraft (System & Subsystem Costs)
5.1 System Level Mgmt & Engrg Hist.-Based Algo.
5.2 S/C Subsystem Costs S/S Cost Model
6. Assembly, Test, and Launch Operations Quasi-GR-Based Algo.
7. Mission Operations Development Quasi-GR-Based Algo.
8. Launch Vehicle Current Price

The discussion in this paper concerns itself solely with the spacecraft subsystem
costs, item 5.2. Mr. Rosenberg’s paper will discuss the overall process (items 1-8)
while Mr. Warfield’s paper will deal with the instrument model used in item 4.
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This paper describes the subsystem portion of the unmanned mission and
spacecraft implementation cost model used in this interactive environment that
is consistemt with the DNP assumptions. This mission and spacecraft subsystem
cost model was developed by Mr. Leigh Rosenberg of JPL. An adjunct instrument
model was developed by Mr. Keith Warfield, also of JPL. Companion papers are
being submitted by Mr. Rosenberg, Mr. Warfield, and other cost team members
that describe other aspects of the new cost estimation environment including the
historical and evolutionary aspects. The focus of this paper will be on the design
and structure of the subsystem cost model itself.

. Model Overview

Because no unmanned space missions have yet been fully implemented using
the new spacecraft development lifecycle paradigm shift, the cost model used is
not based on a historical data base of previously implemented missions. Rather,
the model is based on a data base of the prior estimates of proposed missions that
have been developed using the Team X process and that have been certified as
viable candidates for future mission proposals. As a result, the model described
here acts as a predictor of Team X results and is currently used to validate the
on-going estimates being developed with respect to a consistency with the DNP
Process, past predictions, and previously proposed designsf

The focus of this paper is on a subsystem cost modelthat is based on data obtained
from the Team X process, not on the process or estimates obtained by the team.
Although the model is a predictor of the planning team results, it was
nonetheless designed as if the parameters and cost data were obtained from an
as-built design. An effort is under way to validate model estimates obtained using
the new paradigm as soon as mission implementation costs are available from
more recent missions that do business under the new paradigm.

The Cost Model is linked to the Team X system and subsystem workstations so
that the technical parameters required by the model are passed to the cost
workstation which updates the estimates of the cost for each subsystem as the
deliberations are in progress. The model cost estimates are then used as a
comparator to the costs being estimated by the team and are kept separate from
the team deliberations so as not to bias the results. The Model cost estimates used
in this manner are calculated using algorithms derived from the cost estimation
relationships_(CER’s) derived from the statistical analysis performed on the data
base of DNP projects mentioned above. )

Some of the non-technical project/system infrastructure costs used during the
Team X sessions are estimated by algorithms derived from historical costs for
similar type projects (scaled to the DNP project time phase constraints). Since they
are a function of total system, subsystem, and instrument costs, the algorithms
permit a quick assessment of the infrastructure costs as the subsystem costs are
being developed. At the end of the deliberations the predicted infrastructure costs
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3. Cost Model Data Base

The Subsystem Cost Data Base is a collection of all of the system and subsystem
technical parameters, subsystem masses, and associated cost estimates obtained as
the result of Team X deliberations from October 1996 through October 1997. Of the
nineteen proposed unmanned deep space projects whose estimates and
parameters are contained in the data base, seventeen have been selected for
application for the cost model. Other project cost estimates produced by Team X
during the period the data base was constructed were excluded due to their
unique characteristics which did not entirely fit into the DNP mold. The data
base parameters are continuously undergoing some fine tuning as Team X
review of the design, results in modification to the parameters.

Table 1, below, lists the cost portion of the data base by project. Due to the
sensitive nature of the cost data regarding projects, these are only identified by a
placeholder identification as P1, P2, etc.

Table 1. Subsystem Data Base Cost Summary

§ussystem Costs !Fvgﬂﬂs

|Proiect Tot$M ADCS C&DH Telcom | Power Struct Therm | Other
Core I S/W Core IMeBIU
-5} 01.4 17.8 12.7 2.0 15.0 6.7 15.7 12.3 3.4 5.8
P2 96.7 17.7 9.1 1.4 13.0 14.6 19.6 9.5 3.4 8.4
P3 95.0 13.4 4.4 2.0 13.9 15.2 20.7 10.3 3.4 2.2 9.5

NP4 L 579 2.0 . .
WW
SN
P13 69.2 17.8 8.5 1.0 10.2 4.6 4.1 8.9 2.8 1.7 9.6
P14 54.8 11.9 2.4 0.8 10.4 5.5 10.2 8.3 3.2 2.1
P15 33.4 6.1 2.1 0.6 5.0 5.3 3.5 7.4 1.7 1.7
P16 51.7 10.2 2.9 0.8 8.1 6.1 9.7 9.4 2.8 1.7
P17 36.7 6.2 2.4 0.7 5.4 5.8 3.5 8.2 2.8 1.7
Avg 71.1 12.3 5.9 1.2 10.1 12.5  10.6 9.6 31 3.1 11.4
Std Dev 20.6 4.6 2.8 0.4 3.2 9.2 5.6 2.1 0.7 1.8 2.2
Max 98.2 22.3 12.7 2.0 15.0 42.4 20.7 13.5 5.0 8.4 15.0
Min 33.4 6.1 2.1 0.6 5.0 4.6 3.4 4.5 1.7 1.7 9.5

Table 2, lists the instances of the design parameters, {€} , which have been selected
as having a causal relationship to cost for all projects in the data base.
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Table 2. Subsystem Data Base Values for Technical Parameters by Project

Technical Parameters by Pro]
Total | Total
Steb, [Wisslon |Power Prop Power |[Power Payiced PLData L Data | Deta Pnting [Pning Redun- |Rad. c
Type Lie Type Type »p Rq'd Power Rate Rate /ol o Krwidy Jancy | Dose

Units ordinal Yre ordinal Jordinal | sec. watts | watts | watts | kbps kbps G arcsec larcsec prdinal drdinal krads §g {*]
Param-> [ &1 3] T3 1] 15] 13 13 153 123 10 il Tz T3 L3 [ L5 | L6 17 18
[Project

P1 3 5.2 Chem 325 291 291 52.4 800 30 900 380 Ka High 125 1641 (ses

P2 3 3.4 GaAs SEP,Chem 3000 8199 305 69.9 200 30 1800 360 X High 150 1085 Table

P3 3 74 3500 711 192 2 1.2 1.44 360  180.0 WKa 15

Pi2 3 48 117 17 0.1 Selected 354

P13 3 [ ] NaH+ 220 189 189 33.5 4 125 10 30 5 X/Ka Solected 72 5§30

P14 Spin 0.8 GaAs,Lilon 325 215 2149 10 2 2 0.008 900 180 S Singe 5 1004

P15 Spin 0.5 @GasLion NpH4 220 97 87.3 [ 0.01 0.03 ©0.006 3600 900 S sSigle 5 478

P18 Spin 0.8 GaAs,Lilon bi-pop . 325 153 1831 5 2 2 128 3600 900 S Selected 5 826.8

P17 Spin 0.5 Geas,Lion NpHe 220 15 115 5 20 3600 900 S Snge 5 491
" AVY 3.0 1.5 gy L4 A -1 /5 U TN B £ PO SRR <28 B3 LB 7579 2387 wmE w398 98y

Std Dev 0.0 2.2 n/a n/a 1254.4 1508.0 81.0 21.3 34.3 1540 10.2 911.0 22586 n/a n/a 1029 778
Max 3.0 9.0 n/a n/a . 3500.0 6199.3 324.0 6€9.9 110.0 600.0 30.0 3600.0 900.0 n/a n/a 4000 3528
Min 3.0 0.5 n/a n/a 217.0 545 54.5 2.0 0.0 0.0 0.0 30.0 5.0 n/a nla 5 148

The subsystem mass plays a role as a cost estimation parameter in some
instances. Table 3. lists the subsystem mass data in the data base. When applicable
to a particular regression fit, the subsystem mass is used as one of the technical
parameters for the regression fit.

Table 3. Subsystem Data Base Values for Mass

o)
Contin- | Propel- Lv
Project | lco Powe gency lant__J Adapter | Other |
P1 25.7 14.6 30.3 27.4 118.7 173.6 47 17.6 1365 10442 5.5
P2 375 17.5 143 1043 127 169.3 79 27.9 173 326.5 8.8
P3 18.7 8 17.3  81.2 134 158.6 2 72.2 159 371.8 0 19.2
~
N 5.7 66.9 12 21.6 79.4 0
P11 246 3.7 15.5  69.8 141.7 1127 185 31 711 4305 0
P12 8.7 2.8 14.2 131 13.4 116.6 45 17 89.2 45.2 8.8
P13 | 159 104 131 104 8.7 716 4.4 180 46.3 4.8 14.6 150
P14 6.9 11 174 21.5 69.8 1447 12  221.6 106.3  392.9 0
1 eis 1.9 1 10.4 153 12.2 88.6 7.8  256.6  48.4 35.5 0
P16 7.1 1.6 227 153 53.8 125.2 13 2751 80.8  232.2 0
P17 8 ] 10 4 10 18 4 12 2 a4 1 7 8 260 54 ’“)1 [o]
Avg | 168 7.3 141 452 742 1381 21.0 1229 1104 4158 9.5 66.5
stdDevl 137 5.1 5.9 48.3 607 724 204 109.0 69.7 563.0 16.1 59.2
Max | 48.1 175 30.3 1951 220.1 336.6 79.0 356.4 272.4 2296.4 51.0 150.0
Min 1.9 1.0 7.2 10.4 7.4 14.1 3.2 4.9 17.0 4.8 0.0 19.2

4. Model Construction
In order to predict subsystem costs from the data presented in the data base, a

model that relates subsystem cost to the parameters, {£}, in table 2 is required.
The approach taken was to define a regression model function that could be used
for each of the subsystems to predict cost within the parameter data domain. The
cost data and the parameters relevant to each subsystem would form the basis for
a first order regression fit that would result in an equation that would then be
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used to predict costs for that subsystem within the predictive constraints imposed
by the fit. The total subsystem costs would then be obtained by summing all of the
subsystem cost estimates.

A generalized first order multivariate linear regression function [Draper and
Smith,1966, § 5.1] was used throughout. Although some of the relationships are
non-linear, they may be transformed to this linear form (ie., they are intrinsically
linear). It was determined, through analysis and experimentation, that this
approach would provide very acceptable fits for the data set currently in the data
base. » This type of function is traditionally expressed as follows:

e

n; =By + ZBinj (j=Lk) (4.1)

where 1 i is the dependent variable, Xij are the independent variables, Bj are the

undetermined coefficients of xij to be determined by means of the linear

regression process, and B, is a constant (also to be determined). The index, i, refers

to a particular instance where a measurement of n, occurs for the specific

subsystem for which the linear estimation is being made.

Assume that Y; is the measurement of i such that,
Y‘ - T‘i = Si (4.2)

where &; is the measurement error and errors are assumed to be additive and
satisfy the Gauss- Markov assumptions [Beck and Arnold,1977, § 5.1.3].

. This being the case, we may then express the regression function (4.1) as:

In the particular application in question, the following interpretation will be
given to the variables and coefficients:

Y; The instance, i, of a cost measurement, Y, for the subsystem under

assessment. Yi, is considered an estimate of the regression function,
ni, of the parameter values (Xi)j pertaining to the specific instance.

Xij Instances of the technical parameters selected from the set {£} that
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have a causal relation to the cost, Y. The selected parameters are
ordered from j=1, k, in the equation (4.3). This ordinal specification

may be different than that used in the global set of parameters {£}
since only the parameters inﬂuencing the cost are selected.

B j The coefficients of the linear regressmn equatlon for the subsyster¥
being assessed that are to be estimated by meang[mn
process.

g The measurement error, Yi-ni.

This form (4.3), is the regression model to be used in the discussion that follows.
Other model approaches (including non-linear) were examined but did not
produce significant improvements in fit for the particular set of data being
evaluated.

The linear regression estimation process operates on two sets of data defined
from the data base. These are: 1) an nx1 matrix of the cost instances, Y;, for the

subsystem being assessed , and 2) a corresponding nx(k+1) matrix of the instances

of the technical parameters, Xij selected as being causal for this subsystem.

Y, 1 X4 Xiz o ¢ ¢ o Xy
Y, 1 X1 Xz
. 1 Xa1 X32 Xas
Y=1|. (4.4) X=1. (4.5)
1Xn1oooooooxnb

Using these data as input, the 11near estimation process solves for estimates of B

that minimize € These estlmated coeff1c1ents are termed, bJ In general, the

results of the regression estimation | is expressed with the predictive equation:
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where y., is the predicted cost for the subject subsystem at any instance i, based

on the estimated parameter coefficients, bj' and the parameters, x;;, specified for

ij
that subsystem at that instance. When using the predictive equation, care must be
taken to ensure that the parameters selected fall within the domain of the data

base parameters.

When the subsystem costs have been individually estimated, the total spacecraft
system costs may be calculated by summing the subsystem results. Additional
costs for system management, system engineering, spares, integration and test,
and operations support need to be added to complete the cost estimate for the
spacecraft. These costs and the costs associated with the project infrastructure
itself will be dealt with in a folow-on paper.

. e’ .
The basic process,in construction of the model were as follows:

/]
1) Validate the model data base to ensure that all of the information is
appropriate and accurate,
2) In consultation with subsystem technologists, establish the initial set of
parameters, X;;, casually related to estimating the cost of each subsystem

Yi (eg, mass, power generation, radiation dosage, etc.). Ensure that these

are appropriately and accurately represented in the data base.

3) Determine the general regression function to be used (as above),

4) Conduct an evaluation strategy using the regression strategy selected to
determine the “best” parameters to leave in the fit. In this case a modified
backward elimination process was performed to reduce the set of
parameters, Xij to be considered to those resulting in a validated “best fit”

and and whose t statistics indicate validate the hypothesis that E(bj)=0,
consistent with a maximization of the Coefficient of Multiple

Determination, (R2). Standard F- and t- test constraints for fit and
coefficient validity were utilized.

5) Validate the resulting model against expected behavior within the valid
range of the parameters. The model behavior is checked against
independent subsystem estimates provided by the expert for that

subsystem.

6) Reconstruct any of the model equations based on any new information
obtained in the process of validating the model equation in (5).

7) The entire set of subsystem costs are then validated against the data base

itself to ensure that the difference of the costs obtained vs. the data base
costs for a particular project are within the expected variance of the model.

The current model equations will be updated as improved interpretation of the
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technical parameters is obtained by working with the technical experts in that
area. The model equations will also be reviewed and validated as soon as actual
cost data is available for DNP-Type projects. Work is in progress to collect cost
and technical data from new projects as they enter the implementation stage so
that the model may be validated or corrected with improved or actual cost
information.

. Linear Estimation Process and Resulting Statistics

The Ordinary Least Squares (OLS) method was selected to estimate the
parameters. OLS is usually recommended when nothing is known about the
measurement errors [Beck and Arnold, 1977, § 6.2], since even with little or no
information on the error distribution, an adequate predictor may be obtained.
However, when information regarding the statistics of the errors is known or

assumed, the process produces an efficient estimator of the coefficients (Bj.) This

section analyzes the statistical results of thé use of this méthod and identifies the
general form of the predictive equation which is the basis for the Cost Estimation
Relationships (CER’s) which are discussed in the next section.

In order to be succinct in expressing the logic of the process, we will resort to
matrix notation in describing the analysis [Beck and Arnold, 1977, § 6.2]. The sum

of squares function used for ordinary least squarés with the linear model n=Xp is
S=(Y-X8) T (Y-XB) Y

where Y and X are defined by (4.4) and (4.5) respectlvely and § is a vector of the

undetermined coeff1c1ents Bj, where, j j=0n.

Assume that b is the estimate of B . Then, since Y is the estlmate of m that is
. sought,

Y=Xb (5.2)

In order to solve for the estimated coefficients, b, it is necessary to pre-multiply by

xT so that

XTy_xTxp (5.3)

Further pre-multiplication by xTx )_1, yields
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XTX )y IXTy = xTx Y1 xTx) b =b (5.4)

This results in the estimator of the coefficients B
]l
b= XTx)1xTy (5.5)

It can readily be demonstrated that 5.5 minimizes the sum of squares, 5.1, and is
the OLS estimator of the coefficients Bj [Johnson and Wichern, 1988, § 7.3].

For unique estimation of all the coefficients, Bj, the matrix XTX) must be

non-singular. This means that any one column in X cannot be proportional to
any other column or any linear combination of columns because if such a

proportionality exists the determinant of (XTX) must equal zero.

- As we have mentioned before, if the errors are additive, of zero mean in Y and X,
and the B are nonstochastic, then E( b) is an unbiased estimator of § such that,

E(b)= XTX)1xTxp=p (5.6)

The covariance matrix for the coefficients is expressed as:

covip)= XTx)1xTy xxTx)1 .7
where, y = (€ ET) = 0'2 I

If it is further assumed that the errors are uncorrelated and of constant variance.
. Then the covariance matrix for the coefficients may be reduced to the expression ,

covib)=  (XTx)1s? (5.8)

which is the minimum covariance matrix of b. The variances of the bj (or the

SE2, depending on the assumptions being used) may be obtained from the
d1agona1 elements of thlS matrix [Draper and Smith, 1966, § 4.2].

Similarly, from the relationships, 5.5, 5.6, and 5.7, all of the necessary items

required to evaluate the fit are obtained. The followmg table lists the basic data
items needed for the analysis: h

G. Madrid -10- March 23, 1998




Table 4. Results of Linear Estimation Process Required for Assessment

Estimated Coefficients (b;) and related statistics
b [ bBei | ¢ | = | ¢ | b2 | b | bo

Est. Value (b))

Std. Error (SE)
t Statistic

Statistics on the Estimate (Y)
R* ISE (Y)l F I df Issrog ssrasld

The predicted bj values and the standard errors for the coefficients are, of course,

produced as a direct result of the least squares minimization. For the
assumptions on the error being used, the following statements hold,

E(b) =B, (5.10)

where the cjj are the diagonal elements of xTx )'1.
If o is not known or normality is suspect then

est. var (bj) = Gjj s2 (5.12)

and, SE(b) = (g s2)1/2 (5.13)

" where s2 is the sample variance for each bj and SE(b]-) is the standard error of

estimate.

In a similar manner the variance of Y, V(Y), or the standard error of Y, SE(Y), can
be determined from the diagonal elements of,

cov(Y’) = X (XTX )y IxT 62 (5.14)

Under the assumptions being invoked, the t statistic for each bj may be computed
as,
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tj =E (bj) / SE(b]-) (5.15)

The Coefficient of Multiple Determination, RZ, is defined as,

R?= SS,00+ SSpop= X(Y7FXY)?+ Z(YirY)? (5.16)

g -+
where, SSreg is the regression sum of squares (the deviation between the
regression line (Y";) and the mean ( Y) and SS,  is the total sum of squares (the

total deviation between the data (Yi) and the mean ( Y). However, since SS, . is

the sum of SSre and SS the R2 statistic may be calculated as,

g resid’
R? = SS;0y + (SSpeq + SSresi) (5.17)
where, SS ;4 is defined as $( Y';- Y;)?
The F statistic, used in the test for lack of fit is computed as,
F(df) = [SSpeq + K1+ SE(Y)? (5.18)

The F statistic for the fit is dependent on the degrees of freedom, df, which is
defined for the table above, as: the number of data points, n, less the number of
variables being determined in the regression analysis, k (including the constant,

by).
0
The F-test criteria for goodness of fit used is that,

F>F (5.19)

crit

where F_.;, is the F(k, df, a) critical value from the F-tables. The greater F is than

the F crit value, the better the confidence that the “best” fit has been achieved.

. Cost Estimation Relationships and Constraints

The cost estimation relationships, which are the direct expression of the
model, are built utilizing the predictive equation (4.6), the coefficients
determined in the linear estimation process, and the corresponding statistics
described in section 5. This section summarizes the CER’s developed for the
Spacecraft Subsystem Model by subsystem, including the constraints imposed by
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the data sets used in the linear estimation process.

6.1. Attitude Determination and Control (ADCS)

6.2.

6.3.

The following CER for the estimated subsystem cost (Y) in millions of dollars
(FY97) was determined for ADCS subsystems within the range of the data
domain:

Y = bo + bl"’X1+ bz* XZ + b3*X3 (61)

Coefficients & Constraints for ADCS
Constraints Coeff. |Coeff

X Parameters units |Avg S.Dev |[Max |Min Symbol |Value
X0 Constant =1 "In/a  |n/a n/a n/a n/a by 9.674
X1 Subsystem Mass kg 16.06] 13.6] 48.1 1.9] by 0.2428
X2 D/L Data Rate kbps 60.63] 149| 600 0 B | - P 0.0064
X3 Pointing Knowledge |arcsecs| 327 302] 900 5 b, -0.004

Command and Data Handling (C&DH)

The following CER for the estimated subsystem cost (Y) in millions of dollars
(FY97) was determined for C&DH subsystems within the range of the data
domain:

Y= bO + bl*X1+ bz* X2 (62)
Coefficients & Constraints for C&DH
Constraints Coeff. Coeff
X Parameters units |Avg S.Dev [Max [Min Symbol {Value
X0 Constant =1 n/a n/a n/a n/a In/a by 0.3078
X1 D/L Data Rate kbps 71.8] 1.55 600 0 b, 0.0163
X2 Redundancy ordinal 2.6 0.7 3 1 b, 2.4886

This CER covers the sum of both hardware and software for the C&DH
subsystem.

Telecommunications (Telecom)

The following CER for the estimated subsystem cost (Y) in millions of dollars
(FY97) was determined for Telecommunications subsystems within the range
of the data domain: ’

Y= bO + bl"'X1+ bz* X2 + b3* X3+ b4* X4 (63)
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Coefficlents & Constraints for Telecom

Constraints Coeff. Coeff
X Parameters units |Avg S.Dev |[Max |Min Symbol |Value
X0 Constant =1 n/a In/a n/a n/a n/a bo 10.4
X1 Subsystem Mass kg 14 6 30 7 b, 0.16946
X2 Redundancy ordinal 2.3 0.8 3 1 b, 0.9755
X3 X/Ka Band ordinal 0.5 0.5 1 0 bj -3.54
X4 S/UHF Band ordinal 0.4 0.5 1 0 b, -6.7623

6.4. Power Generation (Power)
The following CER for the estimated subsystem cost (Y) in millions of dollars
(FY97) was determined for Power subsystems within the range of the data

domain:

Y= bO + bl*X1+ bz* Xz + bs* X3+ b4* X4+b5* X5 (64)
Coefficients & Constraints for Power

Constraints Coeft. Coeff

X Parameters units |Avg S.Dev |[Max [Min Symbol [Value
X0 Constant =1 n/a n/a n/a n/a n/a bo 5.08
X1 Rad. Dosage krads 349 972| 4000 5] by 0.002
X2 AMTEC watts 21.9] 58.5f 200 0| |b2 0.1579
X3 Adv Si watts 2038| 3198{10500 0] |bs 0.001
X4 GsAs/HT watts 304 1110] 4600 0| {by 0.002
X5 Gals watts 553} 1900] 7900 0] |bs 0.0022

6.5. Propulsion
The following CER for the estimated subsystem cost (Y) in millions of dollars
(FY97) was determined for Propulsion subsystems within the range of the data

domain:

Y = bO + bl*X1+ bz* X2 (65)
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Coefficients & Constraints for Propulsion

Constraints Coeff. Coeff
X Parameters units |[Avg |S.Dev {Max |[Min Symbol |Value
X0 Constant =1 n/a n/a n/a n/a n/a b, -19.7
X1 Ln (S/S Mass) kg 72.9 59| 220.1 7.4| |by 3.018
X2 Ln ISP n/a 6.1 8.2 5.4| |b, 3.09
6.6. Structures
The following CER for the estimated subsystem cost (Y) in millions of dollars
(FY97) was determined for Structures subsystems within the range of the data
domain:
Y= bO + bl*X1+ bz* X2 (66)
where Y = Ln (cost).
Coefficients & Constraints for Structures
Constraints Coeff. Coeft
X_Parameters units |Avg |S.Dev [Max [Min Symbol |[Value
X0 Constant =1 n/a n/a n/a n/a n/a be 0.65276
X1 Ln SS Mass In/a 5 6 3] |by 0.33002
X2 Ln D/L Data Rate |n/a 1 3 6 -4} |b, 0.00464
Cost is obtained from this CER by computing ey,
A supplementary estimate of the mechanical build-up that is usually
associated with structures. This CER is,
Y = bo + bl*X1+ bz* XZ (66&)
. Coefficients & Constraints for Mechanical Build Up
Constraints Coeff. Coeff
X Parameters units |Avg S.Dev |[Max Min Symbol |Value
Xo Constant =1 n/a n/a n/a n/a n/a b, 1.833
X1 Subsystem Mass kg 136 71 337 14] |by 0.01
X2 Pointing Knowledge |arcsec 326| 302.5 900 5| |b; -0.0004
6.7. Thermal Protection

The following CER for the estimated subsystem cost (Y) in millions of dollars
(FY97) was determined for Power subsystems within the range of the data

domain:
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Y= bO + b1*X1+ bz* X2 (6.7)

Coefficients & Constraints for Thermal

Constraints Coeft. |[Coeff
X Parameters lunits |Avg |S.Dev [Max [Min Symbol [Value
X0 Constant =1 n/a |[n/a n/a n/a n/a bo 1.817
X1 Redundancy ordinal 0.8 0.4 1 0] |by 1.068
X2 Active/Passive ordinal 0.1 0.3 1 0] |ba 4.255

6.8. Statistical Summary
In evaluating each CER the statistics on the bj coefficients and the estimated

response variable, Y were analyzed. The t, statistics were tested to determine if
the resulting estimates for the coefficients were significant contributors. This
information was used in determining which coefficients to leave in the
regression estimate and which to drop out. In general, the final t statistics

satisfied the t-test criteria for significance. The R2 and the F statistic were used
to determine the goodness of fit of the resulting predictive equation for Y.
The following table summarizes the estimate statistics associated with the
CER'’s listed above.

Table 5. Summary Estimate Statistics

Subsystem R? F k df | Fcrit]| F/Fc
ADCS .89 33 3 12 5.95 | 5.53
CDH .81 24 2 13 6.70 | 3.55
Telecomm .88 20 4 11 5.70 | 3.43
Structures .76 20 2 13 6.70 | 3.00
Mech BU .90 59 2 13 6.70 | 8.77
Power Gen. .95 37 2 13 6.70 | 5.52
Thermal .74 17 2 12 6.93 | 2.48
Propulsion .93 90 2 13 6.70 ]13.48
Average .85 29.9 2.4 12.4 6.5 4.6
Min .74 17.2 2.0 11.0 5.7 2.5
Max .9 90.3 4.0 13.0 6.9 13.5

From the summary we see that all of the coefficients of multiple

determination (RZ) are very high (.74 or above). The F statistics are similarly
high and compare well with the F..;, values for each of the regression

estimates. For this reason, we believe that the estimates produced by the
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model are accurate predictor’s of the Team X estimates for missions that fall
within the range of the data base parameters. In order to visually demonstrate
how the model is validated against the source data itself, we show (in figure 2)
a comparison of actual pyopulsion subsystem costs (in the data base) with the
A model predicted costs. Thycost estimate model for this subsystem demonstrates

an extremely good fit to the data (R? = .95).

This does not mean that all work on the model is complete. Other subsystem
models need further refining. A great deal of fine tuning is being conducted
as our continuing sessions with the cognizant engineers bring out other causal
relations and parameters that need to be validated and tested. It is the goal of
the cost team to achieve results such that all of the predictive equations

achieve the optimum ability top’ predict costs within the range of the
parameters. - ;

Fig. 2. Propulsion: Actual vs. Predicted
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7. Cost Model Utilization in an Interactive Environment
The cost model CER’s are currently being utilized by Team X in an interactive
environment that permits spacecraft designers to see the cost impact of their
design decisions as they progress. This permits them to make the necessary trades
between, science, technology, and engineering practice to achieve a design that
falls within a specific cost cap. Leigh Rosenberg will provide more details of this
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process in his paper.

. Concluding Remarks

The Unmanned Spacecraft Subsystem Cost Estimation Model, has evolved into
one of the key tools being used to plan and cost advanced missions. The ability to
predict what the Team X group of experts would estimate as the cost of a proposed
mission is of great value in performing cost trades and off-line studies before
calling a Team X session. Besides avoiding unnecessary planning costs, the
model permits the cost analyst supporting the Team X sessions to evaluate the
costs that are currently being estimated against the model. He may then bring any
inconsistencies to the attention of the Team lead and have the issue resolved
during the session. In every respect, the model will enhance the efficiency of the
planning process and improve the quality of cost estimates for advance projects
under study by Team X.

In the future, the model will also be validated against actual project
implementation costs as these occur. Once a sufficient number of these new
projects have been implemented and the model is modified to reflect these data,
the model will become the de facto tool for predicting future project costs which
are compliant to the DNP approach.

Current work on the model includes adapting the model to handle non-DNP
projects and the addition of a monte carlo simulation feature.
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